Optical observation of single spins in silicon – Nature

  • Kimble, HJ The quantum internet. Nature 4531023-1030 (2008).

    ANNOUNCEMENTS CAS PubMed Google Scholar

  • Pompili, M. et al. Implementation of a multi-node quantum network of distant solid-state quits. Science 372259–264 (2021).

    ANNOUNCEMENTS CAS PubMed Google Scholar

  • Saeedi, K. et al. Room temperature quantum bit storage exceeding 39 minutes using ionized organ donors in silicon-28. Science 342830-833 (2013).

    ANNOUNCEMENTS CAS PubMed Google Scholar

  • Bernien, H. et al. Announced involvement between solids quits separated by three meters. Nature 49786–90 (2013).

    ANNOUNCEMENTS CAS PubMed Google Scholar

  • Delteil, A., Sun, Z., Fält, S. & Imamojlu, A. Implementation of a cascade quantum system: announced absorption of a single photon quantity by a single-electron charged quantum point. Physics. Pastor Lett. 118177401 (2017).

    ADS PubMed Google Scholar

  • Pfaff, W. et al. Unconditional quantum teleportation between distant solids quantum bits. Science 345532-535 (2014).

    ADS MathSciNet CAS PubMed MATH Google Scholar

  • Hensen, B. et al. No cover of Bell inequality violation using electron spins separated by 1.3 kilometers. Nature 526682–686 (2015).

    ANNOUNCEMENTS CAS PubMed Google Scholar

  • Bhaskar, MK et al. Experimental demonstration of memory-enhanced quantum communication. Nature 58060–64 (2020).

    ANNOUNCEMENTS CAS PubMed Google Scholar

  • Raha, M. et al. Optical quantum non-destructive measurement of a single rare earth ionic cubit. Nat. Common. 111605 (2020).

    CAS PubMed PubMed Google Scholar Center

  • Tian, ​​Z. et al. Optically treating single rare earth ions in a nanophoton cavity. Physics. Pastor Lett. 121183603 (2018).

    Google Scholar

  • Gottscholl, A. et al. Initiation and reading of internal spin defects in van der Waals crystal at room temperature. Nat. Mater. 19540–545 (2020).

    ANNOUNCEMENTS CAS PubMed Google Scholar

  • Hayee, F. et al. Revealing multiple classes of stable quantum transmitters in hexagonal bornride with correlated optical and electron microscopy. Nat. Mater. 19534–539 (2020).

    ANNOUNCEMENTS CAS PubMed Google Scholar

  • Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance imaging on single damage centers. Science 2762012-2014 (1997).

    CAS Google Scholar

  • Doherty, MW et al. The nitrogen-vacant color center in a diamond. Physics. Rep. 5281–45 (2013).

    ANNOUNCEMENTS CAS Google Scholar

  • Wan, NH et al. Large-scale integration of artificial atoms into hybrid photon circuits. Nature 583226–231 (2020).

    ANNOUNCEMENTS CAS PubMed Google Scholar

  • Wolfowicz, G. et al. Vanadium spin quits as telecommunication quantum transmitters in silicon carbide. Sci. Adv. 6eaaz1192 (2020).

    ANNOUNCEMENTS CAS PubMed PubMed Central Google Scholar

  • Falk, AL et al. Polystyrene control of spindles in silicon carbide. Nat. Common. 41819 (2013).

    ADS PubMed Google Scholar

  • Lukin, MD et al. 4H silicon carbide-on-isolation for integrated quantum and nonlinear photonics. Nat. Photonics 14330–334 (2020).

    ANNOUNCEMENTS CAS Google Scholar

  • Akhlaghi, MK, Schelew, E. & Young, JF Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation. Nat. Common. 68233 (2015).

    ADS PubMed Google Scholar

  • Thomson, D. et al. Silicon photonics roadmap. J. Opt. 18073003 (2016).

    Google Scholar ADS

  • Dibos, AM, Raha, M., Phonicie, CM & Thompson, JD Atomic source of single photons in the telecommunication group. Physics. Pastor Lett. 120243601 (2018).

    ANNOUNCEMENTS CAS PubMed Google Scholar

  • Tyryshkin, AM et al. Electron spin coherence exceeding seconds in high-purity silicon. Nat. Mater. 11143-147 (2012).

    ANNOUNCEMENTS CAS Google Scholar

  • Morello, A. et al. One-shot reading of an electron spin in silicon. Nature 467687-691 (2010).

    ANNOUNCEMENTS CAS PubMed Google Scholar

  • Pla, JJ et al. First atomic electron spin in silicon. Nature 489541-545 (2012).

    ANNOUNCEMENTS CAS PubMed Google Scholar

  • Maune, BM et al. Consistent singlet-triple oscillations at a silicon-based double quantum dot. Nature 481344-347 (2012).

    ANNOUNCEMENTS CAS PubMed Google Scholar

  • Büch, H., Mahapatra, S., Rahman, R., Morello, A. & Simmons, MY Spin reading and addressability of phosphorus-donating clusters in silicon. Nat. Common. 42017 (2013).

    ADS PubMed Google Scholar

  • Veldhorst, M. et al. Addressable quantum dot kbit with intolerant control fidelity. Nat. Nanotechnology. 9981-985 (2014).

    ANNOUNCEMENTS CAS PubMed Google Scholar

  • Kawakami, E. et al. Electrical control of long-term spinquubit at Si / SiGe quantum point. Nat. Nanotechnology. 9666-670 (2014).

    ANNOUNCEMENTS CAS PubMed Google Scholar

  • Mi, X. et al. Coherent spin-photon interface in silicon. Nature 555599–603 (2018).

    ANNOUNCEMENTS CAS PubMed Google Scholar

  • Crippa, A. et al. Gate reflectometry diffusion reading and coherent control of spinquubit in silicon. Nat. Common. 102776 (2019).

    ANNOUNCEMENTS CAS PubMed PubMed Central Google Scholar

  • Yin, C. et al. Optical addressing of individual erbion ion in silicon. Nature 49791-94 (2013).

    ANNOUNCEMENTS CAS PubMed Google Scholar

  • Redjem, W. et al. Single artificial silicon atoms emitting at telecommunication wavelengths. Nat. Electron. 3738–743 (2020).

    CAS Google Scholar

  • Kane, BE Silicon-based nuclear spin quantum computer. Nature 393133-137 (1998).

    ANNOUNCEMENTS CAS Google Scholar

  • DeAbreu, A. et al. Characterization of the Si: If + spin-photon interface. Physics. Pastor Appl. 1144036 (2019).

    CAS Google Scholar

  • Kenyon, AJ Silicon Erbium. Semiconductor. Sci. Technol. 20R65-R84 (2005).

  • Bergeron, L. et al. Silicon-Integrated telecommunication photon-spin interface. PRX Quantum 120301 (2020).

    Google Scholar

  • MacQuarrie, ER et al. Generating T centers in photonic silicon-on-insulating material by ion implantation. Nova J. Phys. 23103008 (2021).

    ANNOUNCEMENTS CAS Google Scholar

  • Zhang, G., Yuan, C., Chou, JP & Gali, A. Material platforms for defective quits and single-photon emitters. Apl. Physics. Rev. 731308 (2020).

    CAS Google Scholar

  • Safonov, AN, Lightowlers, EC & Davies, G. Carbon-hydrogen-deep light center in silicon responsible for the T-line. Mater. Sci. Forum 196-201909-914 (1995).

    CAS Google Scholar

  • Chartrand, C. et al. Highly enriched Si 28 reveals remarkable optical line widths and good structure for known damage centers. Physics. Pastor B. 98195201 (2018).

    ANNOUNCEMENTS CAS Google Scholar

  • Durand, A. et al. Wide variety of near-infrared single-photon emitters in silicon. Physics. Pastor Lett. 126083602 (2021).

    ANNOUNCEMENTS CAS PubMed Google Scholar

  • Li, L. et al. Effective photon collection of nitrogen vacancy center in circular ball grid. Nano Lett. 151493-1497 (2015).

    ANNOUNCEMENTS CAS PubMed Google Scholar

  • Ding, X. et al. On-demand single photons with high extraction efficiency and near-first indistinguishability from a resonance driven quantum dot in a microcolumn. Physics. Pastor Lett. 116020401 (2016).

    ADS PubMed Google Scholar

  • Sangtawesin S. et al. Origins of diamond surface noise probe correlating single-spin measurements with surface spectroscopy. Physics. Pastor X. 9031052 (2019).

  • Anderson, CP et al. Electrical and optical control of single spins integrated in scalable semiconductors. Science 3661255-1230 (2019).

    Google Scholar ADS

  • Van Dam, SB et al. Optical coherence of diamond nitrogen-vacant centers formed by ion implantation and calcination. Physics. Pastor B. 99161203 (2019).

  • Wolfowicz, G. et al. Awschalom. Quantitative guidelines for solid-state spin defects. Nat. Pastor Mater. 6906–925 (2021).

    ANNOUNCEMENTS CAS Google Scholar

  • Ashida, K. et al. Ultrahigh-Q photon crystal nanocavities manufactured using CMOS process technologies. Choose. Express 2518165 (2017).

    ANNOUNCEMENTS CAS PubMed Google Scholar

  • Irion, E., Burger, N., Thonke, K. & Sauer, R. The defective luminescence spectrum at 0.9351 eV in carbon-doped heat-treated or irradiated silicon. J. Physics. C: Solid State Phys. 185069-5082 (1985).

    ANNOUNCEMENTS CAS Google Scholar

  • Lambropoulos, P. & Petrosyan, D. Fundamentals of Quantum Optics and Quantum Information (Springer, 2007).

  • Johansson, JR, Nation, PD & Nori, F. QuTiP: an open source Python framework for the dynamics of open quantum systems. Computer. Physics. Common. 1831760-1772 (2012).

    ANNOUNCEMENTS CAS Google Scholar

  • Beveratos, A. et al. Room temperature stable one-photon source. Euro. Physics. JD Atom. Mol. Choose. Plasma Physics. 18191-196 (2002).

    CAS Google Scholar

  • Kitson, SC, Jonsson, P., Rarity, JG & Tapster, PR Intense fluctuation spectroscopy of a handful of dye molecules in a microcavity. Physics. Pastor A. 58620 (1998).

    ANNOUNCEMENTS CAS Google Scholar

  • #Optical #observation #single #spins #silicon #Nature

    Leave a Comment

    Your email address will not be published. Required fields are marked *

    Scroll to Top